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Abstract 
 

 The report1 addresses a numerical investigation of the trade-off between some state space 
and FIR filtering algorithms intended to provide optimal time error steering of a local crystal 
clock employing the GPS reference time.  For the sake of low-cost crystal clocks, we employ 
four most simple structures, namely  1) Two-state Kalman, 2) Three-state Kalman, 3) FIR with 
the constant kernel (simple MA), and 4) FIR with the linear kernel (optimally unbiased for lin-
ear phase drift).  The optimal control problem is numerically solved in a sense of least mean 
squares for the GPS-based time error database and for different estimators tuned to have the 
same time constant.  We study a digital control loop of a local clock, assuming the latter to be 
linear and inertialess with respect to the filter memory. We also compare the algorithms for the 
mean square error produced and for sensitivity to variations of the feedback coefficient.    

 
 
 
INTRODUCTION 
 
Fast and accurate locking of a local clock, along with accurate estimation of its performance (time error), 
still remains a key problem in GPS-based timekeeping.  Usually, it is solved employing two- or three-
state Kalman filters via the recursive algorithms; finite impulse response (FIR) filters with a constant, lin-
ear, or exponential kernel; and infinite impulse response (IIR) filters with a limited number of poles (as a 
role, no more than one-two poles).  In our previous reports [1-4], it has been numerically shown that no 
one of the above listed designs is universal for the crystal and rubidium clocks in terms of minimum pro-
duced errors.  The problem may be distinguished to lie in two planes:  
 

1. Uncertainty of a clock time model, which is postulated by the standards to be of three states (time 
error, fractional frequency offset, and linear fractional frequency drift rate) and in which all other un-
necessary but possibly non-zero states, including noise, are removed to the random phase deviation 
component;  

 

2. Different robustness of filters for different frequency offsets and drifts so that the simplest FIR struc-
ture with a constant kernel becomes best if the frequency offset falls below some threshold [4] and, if 
not, the problem may be solved in different ways.  

 
One more problem that might also be mentioned is that the clock noise is inherently colored and, thus, the 
standard Kalman estimator needs to be modified (Kalman claims the noise to be white).  Such a modifica-

                                                 
1 This work was partly supported by CONACyT, Mexico, Project J38818-A. 
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tion may be done with additional states.  However, in the GPS-based measurement the receiver Gauss 
noise dominates and, therefore, the Kalman filter may be used straightforwardly. 
 
It has been a well-known rule of thumb that, in contrast to the IIR structure filter, the FIR one is more ro-
bust against numerical errors such as computational, quantization, and round-off.  Furthermore, since the 
FIR filter utilizes finite measurements of time errors over the most resent time interval, this filter may 
demonstrate robustness against temporary uncertainties of the clock time model and even temporary 
losses of GPS signal.  In turn, the IIR structure in such a situation suffers from a divergence phenomenon.   
 
In this report, we numerically investigate the trade-off between the state space Kalman algorithms, which 
have an IIR structure, and FIR structure algorithms by utilizing them in the clock control loop to solve the 
filtering and one-step prediction problem.  For the sake of low-cost crystal clocks with limited memory, 
we restrict the studies by employing only four of the most simple filters, such as 1) Two-state (2D) Kal-
man, 2) Three-state (3D) Kalman, 3) FIR with a constant kernel (CK), and 4) FIR with a linear kernel 
(LK).  We model, simulate, and investigate the GPS-based discrete time control loop of a synchronized 
time scale, assuming the clock to be linear and inertialess with respect to the filter memory.  We find nu-
merically an optimal loop gain for each of the estimators and evaluate the mean square error (MSE) of the 
steered time scale.  We finally bring a numerical example for the GPS-based digital steering of a crystal 
clock time error, assuming the crystal oscillator to be uncontrollable.     
 
 
DIGITAL  LOOP  WITH 1-STEP  PREDICTIVE  CONTROL  OF  A 
LOCAL  CLOCK 
 
Figure 1 sketches a GPS-based digital control loop for a local clock.  The time error deterministic func-
tion of a clock is extended to the Taylor series and traditionally limited to 2-3 states.  Accordingly, its 
vector of 3×1 or 2×1 dimensions reads, respectively, ][ nnn

T
n Dyx=λ  or ][ nn

T
n yx=λ , where the unknown 

time error nx , fractional frequency offset ny , and linear fractional frequency drift rate nD  are calculated 
by the recursive equations for the model described by 3-states and 2-states, respectively, 
 

3-states:                     21
11 2

∆+∆+= −
−−

n
nnn

Dyxx , (a) ∆+= −− 11 nnn Dyy , (b) 1−= nn DD , (c)                            

(1) 
2-states:                                        ∆+= −− 11 nnn yxx , (a) 1−= nn yy , (b)                                                       (2) 
 
where 1−−=∆ nn tt  is a sample time1 between two neighboring measurements taken at discrete time in-
stants nt  and 1−nt . The random constituent of a clock error suffers of both the oscillator white and colored 
Gauss noises2 [e.g., white phase (f0), flicker phase (f-1), white frequency (f-2), flicker frequency (f-3), and 
random frequency walk (f-4)], so that, generally, the noise vector of 3×1 or 2×1 dimensions reads, respec-
tively, ][ Dnynxn

T
n ζζζλ =ζ  or ][ ynxn

T
n ζζλ =ζ , where xnζ , ynζ , and Dnζ  are relative zero-mean colored sta-

tionary Gauss noises with known covariances xmxnζζ , ymynζζ , and DmDnζζ  or corresponding 

power spectral densities (psd’s).  The noises with different psd slopes are usually assumed to be uncorre-
lated having zero cross-covariances.  The deterministic GPS second (1PPS) is supposed to be reference 

                                                 
1 A sample time is a matter for optimization and for different clocks ranges from tens seconds to 1000 sec [5]. 
2 Here l−f , where l is integer and f is a Fourier frequency, means the slope of the certain part of the power spectral 
density (psd) of the oscillator phase.   
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and, thus, error-free, 0≡GPSnx .  However, at the receiver, the pulses (1PPS) are contaminated by large 
zero-mean additive white Gauss noise nn0  with known (measured) intensity.  Accordingly, the reference 
time error becomes a pure noise.  The time interval meter provides measurements of the clock time error 
employing the GPS reference signal, and this error becomes observable via the noisy vector nξ .  
 

The estimator first solves a stochastic filtering problem to provide an accurate estimate )(ˆ
| knnnn −= ξFλ  

of the clock states (1) or (2) via nξ .  In this estimate, the coefficient k is equal to unity for the state space 
model, and it ranges from 1 to N for the FIR structure.  Respectively, an operator of the estimation nF  
differs.  In the holdover case when the GPS timing signals are not temporary available, the estimator 
forms a recursive 1-step autonomous prediction )ˆ(~

1|11 +−++ = knnnn λλ P  to make it possible for the algo-
rithm to be robust and for the clock to be locked utilizing the recursive noise-free model.  Should the pre-
dictor be utilized in the algorithm, the estimation problem is crucial for the clock error steering, and we 
therefore discuss its solution in detail in the following sections.  Finally, the predicted value 1

~
+nλ  is 

scaled with an unknown negative loop gain 1+− nk  and then mixed with the clock 1-step ahead actual 
value 1+nλ .  The optimal control law is then a linear feedback law that specifies 1+nλ  to be 

111
~

+++ −= nnn λkλ , where the feedback coefficients matrix for 3-states and 2-states is described by, re-
spectively,  
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in which the components xnk , ynk , and Dnk  are intended to govern each of the clock states.  
 
To obtain a time-invariant value of the feedback gain (3) over the observable database of M points, the 
MSE ])~[( 2

111
2

1 ++++ += nnnn E λkλε  is minimized for the optimal feedback gain 0k .  The optimization 

problem then appears to minimize the quadratic performance index (cost function) 
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Such a problem may be solved in two ways, namely by employing either the state space (IIR) model 
( 1=k ) or the FIR structure ( Nk = ).  Below we consider both cases. 
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STATE  SPACE  PREDICTIVE  ESTIMATION  OF  TIME  ERROR 
 
In the state space, the clock state equation and the observation equation are given by, respectively, 
 

nnnn λζuA ++= −1λλ , (a) nnn nξ 0+= Hλ , (b),                                           (5) 
 
where ]...[ 21 mnnn

T
n uuu=u  is vector of a control signal of m×1 dimensions (for the clock model, 2=m  or 

3) and dimensions of all other vectors and matrixes depend on the number of the states.  The noises nλζ  
and nn0  are jointly uncorrelated, so that for all k and n there is 0)( 0 =knnE λζ .  The GPS discrete station-

ary white Gauss noise nn0  has zero mean, 00 =nn , with known covariance  
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which is usually assumed to be time-invariant, ∆=== 2/0

2
0

2
0 NVn σσ , where 2/0N  is a double-sided 

psd of the corresponding continues noise.  In the clock control problem, we ignore the fact that the noise 
nλζ  is colored and assume it to be white3.  Accordingly, we go to the idealized covariance matrix 
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in which dimensions of Ψ  depend on the number of the states.  For the sake of definiteness, we finish 
now with a consideration of two aforementioned cases of the state space filter structures. 
 
Case I—Two-state filter structure.  When an oscillator noisy phase is assumed to be Brownian with a 
linear drift, only two states become non-zero and, thus, the state transition matrix of 2×2 dimensions, 
measurement matrix of 2×1 dimensions, and error matrix of 2×2 dimensions are formed by, respectively,  
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where 2/yN  is a double-sided uniform psd of the second state noise, which is dependent on a sample 

time ∆.. We notice that the quantity 0
2 / NN y∆  represents the desired (or conventionally assumed) signal-

to-noise ratio (SNR) in the observation nξ .  
 
Case II—Three-state filter structure. Assuming the oscillator phase to be Brownian with a quadratic 
drift leads to the 3-state situation, in which the state transition matrix of 3×3 dimensions, measurement 
matrix of 3×1 dimensions, and error matrix of 3×3 dimensions become, respectively,  
 

                                                 
3 In such a model, the noise is not oscillator’s white phase (f0) but rather a permitted time error for the locked clock 
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where 2/DN  is a double-sided uniform psd of the third state noise, which depends on ∆.. Like the case 
(8), here the quantity 0

2 / NND∆  represents the desired SNR in the observation nξ .  
 
The linear Kalman estimation algorithm associated with the filtering and 1-step prediction problem reads 
 
Enter 1−nR  and 1

ˆ
−nλ  

     Prediction (project ahead):                                                    Ψ+= −
T

nn AARR 1
~

,                                     
(10) 
     Compute Kalman gain:                                                         1)~~ −+= VHR(HHRK T

n
T

nn ,                         
(11) 
     Update estimate with measurement nξ :                               )ˆ(ˆˆ

11 −− −−+= nnnnnn λξλλ HAuKA ,             
(12) 
     Compute error covariance for updated estimate:                 nnn RHKIR ~)( −= ,                                          
(13) 
Make 1-step ahead, n = n + 1, and go to (10). 
     Compute 1-step prediction:                                                    nnnn ||1

ˆ~ λAλ =+ ,                                              
(14) 
     Predict 1-step ahead error covariance:                                 Ψ+=+

T
nnnn AARR ||1

~
,                                 

(15) 
  
where nn|λ̂  in (14) is the estimate (12) taken for the observed n points and nn|R  in (15) is the error co-

variance associated with the estimate nn|λ̂ .  

 
  
PREDICTIVE  FIR  FILTER  FOR  TIME  ERROR  ESTIMATION 
 
For FIR structures, the clock time error equations (1) and (2) modify to   

3-states:                       22
00 2

nDnyxxn ∆+∆+= , (a),  nDyyn ∆+= 0 , (b),  DDn = , (c),                            

(16) 

2-states:                                        nyxxn ∆+= 00 , (a),  0yyn = , (b),                                                      (17) 

 
where 0x , y0 , and D are initial constant values. The time error model and its observation equation are 
then 
 

nnnn λζuA ++= 0λλ ,  (a),  nnn nξ 0+= Hλ , (b),                                      (18) 
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where for the constant initial state vectors ][ 000 DyxT =λ  and ][ 000 yxT =λ  the transition matrixes of 3×3 
and 2×2 dimensions become nonstationary, respectively, 
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In view of (18b) and nn x=Hλ , the FIR filtering estimate of a time error reads 

N
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where Wi is a weighting function (kernel or impulse response) of a FIR filter; ]...[)( 11 +−−= Nnnn

T
N n ξξξz  is 

the measurement data vector, of dimensions N×1; )](),...,(),([ 110 NWNWNW N
T
N −=W  is the filter weight 

matrix, of dimensions N×1; ]...[)( 11 +−−= Nnnn
T
N xxxnx  is the time error data vector, of dimensions N×1, and 

]...[)( 11 +−−= Nnnn
T
N nnnnn  is the GPS noise data vector, of dimensions N×1.  Inherently, the first estimate 

provided by (20) appears at the point n with a delay on the transient 
 

)1( −∆= Nθ .                                                                 (21) 
 

So long as in the control strategy a predictor is removed out of the FIR filter, a 1-step linear prediction is 
formed for (20) in the recursive form 
 

)ˆˆ(ˆ 1|1|||1 −−−−−−+ −+= knknknknnnnn xxExx ,                                                  (22) 
 
where an average increment of the time error estimates is taken for the reasonable number k of measure-
ments in the nearest past.  Let us notice that there may be utilized some other predictive algorithms based, 
for example, on the regression approximation [1] and polynomial FIR predictor structure [6].  The mean 
square error (MSE) of the FIR estimate nnxn xx ˆ−=ε  over the observed database is calculated by 

2222 ˆ)( xnnxx xE σεε +∆== , where the estimate bias and variance are computed by, respectively, 

 
)(ˆ N
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T
Nnn xEx WnWx −−=∆ , (a), ])ˆ[( 222

nN
T
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T
Nnxn xxE ∆−−−= WnWxσ , (b).            (23) 

 
We notice that, in contrast to the state space estimator whose structure is exhaustedly determined by the 
number of the states and properly filled matrixes, the waiting function of the FIR filter is a matter for op-
timization.  Below we consider two cases suitable for the GPS-based locking of crystal clocks. 
 
Case III—FIR structure with a constant kernel.  The CK FIR filter is also known as a simple moving 
average (MA) filter that is optimal in a sense of minimum produced noise.  Its weight is rectangular, i.e. 

NN N IW 1−= , where T
N ]1...11[=I  is a unit matrix of dimensions N×1.  A disadvantage is a large 

bias when a time error function demonstrates an easily seen nonstationarity.  Errors associated with the 
filter application to the Brownian phase with a linear drift are examined in [4]. 
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Case IV—FIR structure with a linear kernel.  The LK FIR filter is optimally unbiased when a time error 
function behaves as a Brownian phase with a linear drift.  The filter was designed in [7] with its weight-
ing function 
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⎨
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otherwise,0

10,
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6)12(2 Ni

NN
iN

Wi .                                               (24) 

 
Statistical errors of this filter for the Brownian phase with a linear drift are discussed in [4].  An advan-
tage is that, having a relatively simple kernel (24), the filter demonstrates an intermediate performance 
between the three-state and two-state Kalman filters and this is independent of the time error function.  
 
 
NUMERICAL  STUDIES  OF  OPTIMAL  LOOP  GAIN 
 
We continue on with numerical studies of the loop (Figure 1) employing four above-described estimators.  
To compare the results, we exploit the same measurement of the time error of a crystal clock.  We use the 
Motorola GPS UT+ Oncore Timing receiver; the low-cost crystal oscillator, AT-cut, 5 MHz in the local 
clock; and the time interval meter with a resolution of 1 ns.  A sample time is set to be 100s.  In parallel, 
we measure the time error for the reference rubidium standard.  We numerically solve the control problem 
(4b) for the steered time error (1-state), assuming the oscillator to be uncontrollable (indirect steering).  A 
typical result is shown in Figure 2, where nξ  is a GPS-based measurement; nλ  is an actual time error 
measured for the rubidium standard; nn u+ξ  is a controlled measurement; and nn u+λ  is a time error of 
a locked clock.  To evaluate the trade-off, we set the same time constant for all filters.  In doing so for the 
Kalman filters, which has a IIF structure, we set the noise psd 2/yN  in (8c) or 2/DN  in (9c) to finish 
the transient of the solution of the discrete time Riccati equation (10) at the level of 0.95 with respect to 
the first state.  We then solve the control problem (4b) for the optimal feedback gain xk0 .  
 
Figure 3 shows the RMSE of the locked clock as function of xnk  for several numbers N of the points in 
the average, employing the 2D Kalman (a) and 3D Kalman (b).  Figure 4 makes it for the CK FIR (a) and 
LK FIR (b).  In these figures, the minimum value of xnk  is optimal in a sense of LMS.  For the sake of 
processing accuracy, we refrain from setting ,150>N  having a limited database.  We notice that, by 
increasing xnk , the clock loop evolves from a large error to its minimum, and then goes through the in-
termittence to divergence (full instability).  The generalization is shown in Figure 5. Here, the first plot (a) 
shows how the optimal gain xk0  changes if N increases, and the second one (b) demonstrates the same for 
the RMSE.  It is neatly seen that the unbiased filters (2D and 3D Kalman, and LK FIR) behave with quite 
some similarity, whereas the CK FIR, with its large bias, demonstrates an opposite sign of the slopes. 
 
 
DISCUSSION  
 
GPS-based locking of a local clock assumes estimation of the time error with its following steering in the 
closed loop.  Very often, the estimation is provided by employing FIR and state space structures.  To de-
termine the trade-off between these filters, we simulated and studied a digital control loop of a local clock 
for four most simple filters: 2D Kalman, 3D Kalman, CK FIR, and LK FIR.  Setting the same time con-
stant for all filters, exploiting the only typical measurement obtained for the crystal clock, and assuming 
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the oscillator of the clock to be uncontrollable (direct discrete control of a time scale), we arrive at the 
following conclusions: 
• With small N, when the noise dominates in the averaging, the CK FIR produces better result over all 

other examined estimators; 
• With large N, the 2D Kalman is best and the LK FIR occupies an intermediate place between the 3D 

and 2D Kalman; 
• The 2D Kalman and CK FIR have, respectively, less and more sensitive structures to variations in the 

optimal feedback gain. 
 
Overall, we notice that, for the sake of accuracy, the estimator needs to be designed to possess a structure 
that guarantees minimum error for all feasible situations with the clock time error.  Such an estimator may 
be produced in different ways [8]. However, important constrains are: 1) the algorithm must be simple (it 
should not be burdensome for clock engineers), 2) it must be robust, and 3) it must rely on small memory 
of a low-cost crystal clock. 
 
 
REFERENCES 
 
[1] Y. S. Shmaliy, A. V. Marienko, and A. V. Savchuk, 2000, “GPS-based optimal Kalman estimation of 

time error, frequency offset, and aging,” in Proceedings of the 31st Precise Time and Time Interval 
(PTTI) Systems and Applications Meeting, 7-9 December 1999, Dana Point, California, USA (U.S. 
Naval Observatory, Washington, D.C.), pp. 431-440. 

 
[2] Y. S. Shmaliy, A. V. Marienko, M. Torres-Cisneros, and O. Ibarra-Manzano, 2001, “GPS-based time 

error estimates provided by smoothing, Wiener, and Kalman filters: A comparative study,” in Pro-
ceedings of the 32nd Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 28-
30 November 2000, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 157-
169. 

 
[3] Y. S. Shmaliy, O. Ibarra-Manzano, R. Rojas-Laguna, and R. Vazguez-Bautista, 2002, “Studies of an 

optimally unbiased MA filter intended for GPS-based timekeeping,” in Proceedings of the 33rd Precise 
Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2001, Long 
Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 455-468. 

 
[4] Y. S. Shmaliy and O. Ibarra-Manzano, 2003, “An optimal FIR filtering algorithm for a time error 

model of a precise clock,” in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems 
and Applications Meeting, 3-5 December 2002, Reston, Virginia, USA (U.S. Naval Observatory, 
Washington, D.C.), pp. 527-539. 

 
[5] D. W. Allan and J. A. Barnes, 1982, “Optimal time and frequency transfer using GPS signals,” in 

Proceedings of the 36th Annual Frequency Control Symposium, 2-4 June 1982, Philadelphia, Penn-
sylvania, USA (NTIS AD-A130811), pp. 378-387. 

 
[6] S. Väliviita, S. J. Ovaska, and O. Vainio, 1999, “Polynomial predictive filtering in control instrumen-

tation: A review,” IEEE Transactions on Industrial Electronics, 46, 877-888. 
 
[7] Y. S. Shmaliy, 2002, “A Simple Optimally Unbiased MA Filter for Timekeeping,” IEEE Transactions 

on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-49, 789-797. 
 
[8] A. H. Jazwinski, 1970, Stochastic Processes and Filtering Theory (Academic Press, New York). 
 

 



35th Annual Precise Time and Time Interval (PTTI) Meeting 

 257

 
 

Filter kn 1-step
predictor 

nξ  nλ̂ 1
~

+nλ
nλ  nn0  

GPSnx  

GPS time 
error model 

Clock time 
error model 

n = n+1 

Estimator 

 
 

Figure 1.  A discrete time model of GPS-based steering of a local clock time error with an indirect 
control. 
 

 

 
 
Figure 2.  Typical measurement of a time error of a crystal clock: nξ  is a GPS-based observation, nx  is 
an actual time error measured for the rubidium reference clock, xnn u+ξ  means an observation in the 
control loop, and xnn ux +  means a steered time error. 
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a) 

 
b) 
 

Figure 3.  RMSE of the steered crystal clock as function of the feedback gain for several numbers N of the 
points in the filter transient: a) 2D Kalman, b) 3D Kalman. 
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a) 

 
b) 
 

Figure 4.  RMSE of the steered crystal clock as function of the feedback gain for several numbers N of the 
points in the filter kernel: a) CK FIR, b) LK FIR. 
 

0 10 20 30 40 50 60 500 

1000 

1500 

2000 

2500 

Feedback gain

N = 26 

50 

100 150 

Optimal gain 

0 10 20 30 40 50 60 70 

500 

1000 

1500 

2000 

2500 

N = 150 
100 

50 

26 

Feedback gain

Optimal gain 



35th Annual Precise Time and Time Interval (PTTI) Meeting 

 260

 
a) 

 
b) 
  

Figure 5.  Statistical performance of the steered crystal clock for four filters as function of a number N of 
the points in the average: a) Optimal feedback coefficient xk0 , b) RMSE. 
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